backPowrót do 2/2017
Technical Issues
2/2017 pp. 42-47

Wpływ właściwości mechanicznych okładzin i rdzenia na stateczność belek trójwarstwowych poddanych zginaniu trójpunktowemu


pdf Pobierz pełny tekst pdf

Streszczenie

The objective of this work is the numerical analysis of the stability of three-layered beams with a metal foam core. The beams were subjected to three-point bending. The analysis of the local buckling and the influence of material properties of the faces and the core on critical loads and buckling shape was performed. The calculations were made in elastic range on a family of beams with different mechanical properties of the faces and the core. Calculations of critical loads and buckling shape were performed. The analysis of the finite element model (FEM) of three-layered beam has been performed with the use of ANSYS software. The upper and the lower face have been retreated from the core by half of the thickness. Tie constrains have been applied between the core and the faces. Due to symmetry of the model only a quarter of the beam has been modelled with proper boundary conditions on the symmetry planes.

Słowa kluczowe

stability, buckling, three-layered beam, three-point bending, critical load, FEM model

Literatura

1. Hadi, B.K., Wrinkling of sandwich column: comparison between finite element analysis and analytical solutions, Composite Structures, 2001, 53, pp. 477-482.

2. HEXCEL Composites, Honeycomb Attributes and Properties. A comprehensive guide to standard Hexcel honeycomb materials, configurations and mechanical properties, 1999.

3. Jasion, P., Magnucki, K., Wyboczenie-zmarszczenie okładziny belki trójwarstwowej przy czystym zginaniu. Modelowanie Inżynierskie, 2011, 41, pp. 151-156.

4. Koissin, V., Shipsha, A., Skvortsov, V., Effect of physical nonlinearity on local buckling in sandwich beams, Journal of Sandwich structures and materials, 2010, 12, pp. 477-494.

5. Magnucka-Blandzi, E., Magnucki, K., Effective design of a sandwich beam with a metal foam core, Thin-Walled Structures, 2007, 45, pp. 432-438.

6. Magnucki, K., Strength and buckling of sandwich beams-columns, Modelowanie Inżynierskie, 2011, 42, pp. 249-258.

7. Magnucki, K., Szyc, W., Wytrzymałość i stateczność belek i płyt trójwarstwowych z rdzeniem z pianki aluminiowej, Wydawnictwo Politechniki Poznańskiej, Poznań, 2012.

8. Nogowczyk, R., Zastosowanie programowania symbolicznego do analizy stateczności i drgań struktur sandwiczowych, Rozprawa doktorska, Politechnika Krakowska, Kraków, 2009.

9. Phan, C.N., Bailey, N.W., Kardomateas, G.A. et al., Wrinkling of sandwich wide panels/beams based on the extended high-order sandwich panel theory: formulation, comparison with elasticity and experiments, Archives of Applied Mechanics, 2012, 82, pp. 1585-1599.

10. Smith, B.H., Szyniszewski, S., Hajjar, J.F. et al., Steel foam for structures: a review of applications, manufacturing and material properties, Journal of Constructional Steel Research, 2012, 71, pp. 1-10.

11. Steeves, C.A., Fleck, N.A., Collapse mechanisms of sandwich beams with composite faces and a foam core, loaded in three-point bending. Part I: analytical models and minimum weight design, International Journal of Mechanical Sciences, 2004, 46, pp. 561-583.

12. Stiftinger, M.A., Rammerstorfer, F.G., Face layer wrinkling in sandwich shells – Theoretical and experimental investigations, Thin-Walled Structures, 1997, 29, pp. 113-127.

13. Tonelli, D., Bardella, L., Minelli, M., A critical evaluation of mechanical models for sandwich beams, Journal of Sandwich Structures and Materials, 2012, 14, pp. 629-654.

14. Vinson, J.R., Sandwich structures, Mechanical Engineering, 2001, 54(3), pp. 201-214.

15. Webber, J.P.H., Kyriakides, S., Lee, C.T., On the wrinkling of anisotropic sandwich column with laminated cross-ply faces, Aeronaut Quarterly, 1976, pp. 264-272.

16. Woźniak, M., Interaction of a plate with elastic foundation. PWN, Warszawa, 2001.

17. Życzkowski, M., Stability of bars and system bars, PWN, Warszawa, 1988.