backPowrót do 3/2015
Technical Issues
3/2015 pp. 3-10

Analiza porównawcza struktury wewnętrznej implantów hydrofilowych oraz hydrofobowych stosowanych w chirurgii okulistycznej metodą spektroskopii czasów życia pozytonów


pdf Pobierz pełny tekst pdf

Streszczenie

In presented work internal structures of intraocular lenses were analyzed in terms of defectiveness degree. Studies were conducted by means of positron annihilation lifetime spectroscopy method PALS. The aim of the work was determination of basic parameters describing annihilation centers in research materials, such as positron lifetime in bulk material, mean positron lifetime in the internal structure, positron trapping rate by trapping centers as well as free volumes dimensions. In obtained results differences in free volumes and positron traps concentrations between hydrophilic and hydrophobic materials were noted. Furthermore, comparison of materials with and without blue light chromophores revealed differences in positron trapping rate by multivacancy-like free spaces. Achieved results were referenced for mechanical properties of the studied materials.

Słowa kluczowe

intraocular lenses, positron annihilation, free volume, multivacancies, hydrophilicity, hydrophobicity, chromophores

Literatura

1. Kondyurin, A., Bilek, M., Ion beam treatment of polymers. Application aspects from medicine to space, Elsevier, 2008.

2. Schwiegerling, J., Intraocular lenses. Handbook of optics, The McGraw-Hill, Ed. 3, 2010.

3. Modjarrad, K., Ebnesajjad, S., Polymeric biomaterials, Handbook of polymer application in medicine and medical devices, Elsevier, 2014.

4. McIntyre, S., Werner, L., Mamalis, N., Hydrophobic acrylic IOLs: a primer, Cataract & refractive surgery today Europe, 2011, march, pp. 39-44.

5. de Gruijl, F.R., van der Leun, J.C., Environment and health: 3. Ozone depletion and ultraviolet radiation, CMAJ, 2000, 163(7), pp. 851-855.

6. Cuthbertson, F.M., Peirson, S.N., Wulff, K., Foster, R.G., Downes, S.M., 2009 Blue light filtering intraocular lenses: Review of potential benefits and side effects, J. Cataract Refract. Surg., 2009, 35, pp. 1281-1297.

7. Ahmed, R., Ghayoor, I., Malik, M.M., Tabssum, G., Ahmed, F., Comparison between acrylic hydrophilic and acrylic hydrophobic intraocular lens after phacoemulsification, Pak. J. Ophthalmol, 2011, 27, pp. 195-199.

8. Nagy, Z.Z., Kranitz, K., Takacs, A.I., Mihaltz, K., Kovacs, I., Knorz, M.C., Comparison of intraocular lens decentration parameters after femtosecond and manual capsulotomies, J. Refract. Surg., 2011, 27(8), pp. 564-569.

9. Werner, L., Abdel-Aziz, S., Cutler Peck, C., Monson, B., Espandar, L., Zaugg, B., Stringham, J., Wilcox, C., Mamalis, N., Accelerated 20-year sunlight exposure simulation of a photochromic fooldable intraocular lens in a rabbit model, J. Cataract Refract. Surg., 2011, 37(2), pp. 378-385.

10. Spyratou, E., Asproudis, I., Tsoutsi, D., Bacharis, C., Moutsouris, K., Makropoulou, M., Serafetinides, A.A., UV laser ablation of intraocular lenses: SEM and AFM microscopy examination of the biomaterial surface, Appl. Surf. Sci., 2010, 256, pp. 2539-2545.

11. Ramani, R., Perihar, J.K.S., Ranganathaiah, C., Awasthi, P., Alam, S., Mathur, G.N., Free volume study on calcification process in an intraocular lens after cataract surgery, J. Biomed. Mater. Res. Part B: Appl. Biomater., 2005, 75B, pp. 221-227.

12. Ferreira Marques, M.F., Gordo, P.M., Lopes Gil, C., Kajcsos, Zs., Gil, M.H., Mariz, M.J., de Lima, A.P., Positron lifetime studies in vinyl polymers of medical importance, Radiat. Phys. Chem., 2003, 68, pp. 485-488.

13. Dryzek, J., Charakterystyka procesu anihilacji pozytonów w fazie skondensowanej. Wyd. UJ, Kraków, 2005.

14. Kobayashi, Y., Ito, K., Oka, T., Hirata, K., Positronium chemistry in porous materials, Radiat. Phys. Chem., 2007, 76, pp. 224-230.

15. Jasińska, B., Badanie ośrodków porowatych metodą anihilacji pozytonów, Wyd. UMCS, Lublin, 2005.

16. Boyko, O., Shpotyuk, Y., Filipecki, J., Positron annihilation lifetime study of extended defects in semiconductor glasses and polymers, Phys. Status Solidi C., 2013, 1, pp. 121-124.

17. Tao, S.J., Positronium annihilation in molecular substances, J. Chem. Phys., 1972, 56 (11), pp. 5499-5510.

18. Eldrup, M., Lightbody, D., Sherwood, J.N., 1981. The temperature dependence of positron lifetimes in solid pivalic acid, Chem. Phys., 1981, 63, pp. 51-58.

19. Liao, K.S., Chen, H., Awad, S., Yuan, J.P., Hung, W.S., Lee, K.R., Lai, J.Y., Hu, C.C., Jean, Y.C., Determination of free volume properties in polymers without orthopositronium components in positron annihilation lifetime spectroscopy, Macromolecules, 2011, 44, pp. 6818-6826.

20. Pethrick, R.A., Positron annihilation - a probe for nanoscale voids and free volume? Prog. Polym. Sci., 1997, 22, pp. 1-47.

21. Kansy, J., Microcomputer program for analysis of positron annihilation lifetime spectra, Nucl. Instr. Meth. Phys. Res. A, 1996, pp. 374(2): 235-244.

22. Dlubek, G., Taesler, C., Pompe, G., Pionteck, J., Petters, K., Redmann, F., Krause-Rehberg, R., Interdiffusion in a particle matrix system of two miscible polymers: an investigation by positron annihilation lifetime spectroscopy and differential scanning calorimetry, J. Appl. Polym. Sci., 2002, 84, pp. 654-664.